Biostatistics I: Hypothesis testing

Continuous data: Two-sample (dependent) tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

e.andrinopoulou@erasmusmc.nl

♥@erandrinopoulou

- Two-sample t-test (dependent samples)
- Two-sample Wilcoxon signed-rank test (dependent samples)
- Examples

Assumptions

- The dependent variables are continuous
- ► The observations are dependent
- The distribution of the differences in the variable between the two correlated groups are approximately normally distributed
- ► The dependent variables do not contain any outliers

Scenario

Is the mean BMI of the students before the exams different from the mean BMI of the students after the exams?

Connection with linear regression

 $y_{2i} - y_{1i} = \beta_0 + \beta_1 x_i + \epsilon_i$, where $x_i = 0$

 $H_0: \beta_0 = 0$ $H_1: \beta_0 \neq 0$

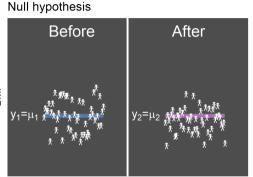
Scenario

Is the mean BMI of the students in my university different from the BMI of all students?

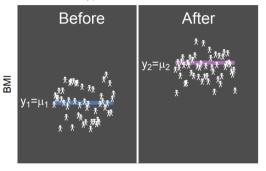
Alternatively

 $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$

Two-sample t-test (dependent samples): Theory



Alternative hypothesis



Two-sample t-test (dependent samples): Theory

Test statistic

- $t = \frac{(\bar{x}_1 \bar{x}_2) (\mu_1 \mu_2)}{sd(x)/\sqrt{n}}$, where
 - Sample mean of group 1: \bar{x}_1
 - Sample mean of group 2: \bar{x}_2
 - Standard deviation of the difference: sd(x)
 - Number of subjects: *n*

Sampling distribution

- *t*-distribution with df = n 1
- Critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

• Compare test statistic (t) with the critical values or the p-value with α

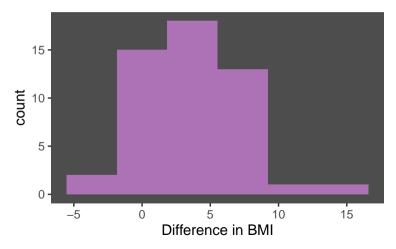
Scenario

Is the mean BMI of the students before the exams different from the mean BMI of the students after the exams?

Hypothesis

 $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$

Collect and visualize data



Hypothesis

 $H_{0}: \mu_{1} - \mu_{2} = 0$ $H_{1}: \mu_{1} - \mu_{2} \neq 0$

Test statistic

Let's assume that:

- Sample mean before: $\bar{x}_1 = 24$
- Sample mean after: $\bar{x}_2 = 25$
- Standard deviation of the difference: sd(x) = 4
- ▶ Number of subjects: *n* = 50

$$t = \frac{\bar{x}_1 - \bar{x}_2}{sd(x)\sqrt{n}} = \frac{24 - 25}{4/\sqrt{(50)}} = -1.77$$

Degrees of freedom df = n - 1 = 49

Type I error $\alpha = 0.05$

Critical values

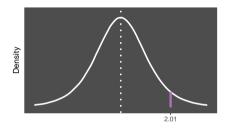
Using R we get the critical values from the t-distribution: critical value_{$\alpha/2$} = critical value_{0.05/2}

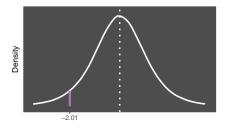
```
qt(p = 0.05/2, df = 49, lower.tail = FALSE)
```

```
[1] 2.009575
-critical value<sub>\alpha/2</sub> = -critical value<sub>0.05/2</sub>
```

qt(p = 0.05/2, df = 49, lower.tail = TRUE)

[1] -2.009575





Draw conclusions

We reject the H_0 if:

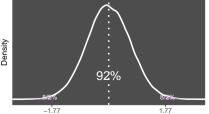
► $t > critical value_{\alpha/2}$ or $t < - critical value_{\alpha/2}$

We have -1.77 > -2.01 \Rightarrow we do not reject the H_0

Using R we obtain the p-value from the *t*-distribution:

2 * pt(q = -1.77, df = 49, lower.tail = TRUE) $\frac{2}{3}$

[1] 0.08294898



Assumptions

- Population distribution of the differences is symmetric
- The observations are dependent

Scenario

Is the median score value of the students in my university different this year compared to next year?

Connection with linear regression

signed_rank($y_{2i} - y_{1i}$) = $\beta_0 + \beta_1 x_i + \epsilon_i$, where $x_i = 0$ $H_0: \beta_0 = 0$ $H_1: \beta_0 \neq 0$

Alternatively

 $H_0: m_1 = m_2$ $H_1: m_1 \neq m_2$

Test statistic

- Calculate the ranks of the absolute difference
 - If there are ties you assign the average of the tied ranks
 - If a pair of scores is equal then they are considered tied and dropped from the analysis and the sample size is reduced
- Obtain the sum of those ranks where the difference was positive $W_+ = \sum R_d^+$ or negative $W_- = \sum R_d^-$. The test statistic (W) is the minimum of W_+ and W_-

If **one-tailed**: use either W_+ or W_- for the test statistic (W) depending on the direction of the alternative hypothesis

Sampling distribution

For large sample size: we can use the normal approximation, that is, W is normally distributed.

$$\mu_{W} = \frac{n(n+1)}{4}$$

$$\sigma_{W} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

$$Z = \frac{|max(W_{+},W_{-}) - \mu_{W}| - 1/2}{\sigma_{W}}$$

When there are ties, the mean stays the same but the variance is reduced by a quantity

For small sample size: we can use the exact distribution (more details in the application).

Get critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

 \blacktriangleright Compare test statistic with the critical values or the p-value with α

Scenario

Is the median score value of the students in my university different this year compared to next year?

Hypothesis

 $H_0: m_1 = m_2$ $H_1: m_1 \neq m_2$

Collect and visualize data

Х	У	Difference	Difference	rank
5	10	-5	5	3
4	5	-1	1	1
4	8	-4	4	2

Hypothesis

 $H_0: m_1 = m_2$ $H_1: m_1 \neq m_2$ **Test statistic** W = 6 and $W_{+} = 0$

Type I error $\alpha = 0.05$

Critical values

Using R we get the critical values from the exact distribution: low critical value_{$\alpha/2$} = low critical value_{0.05/2}

qsignrank(p = 0.05/2, n = 3, lower.tail = TRUE)

```
[1] 0
```

```
high critical value<sub>\alpha/2</sub> = high critical value<sub>0.05/2</sub>
```

qsignrank(p = 0.05/2, n = 3, lower.tail = FALSE)

[1] 6

Draw conclusions

We reject the H_0 if:

• $W > \text{high critical value}_{\alpha/2}$ or $W < \text{low critical value}_{\alpha/2}$

We have 6 = 6 and 0 = 0 \Rightarrow we do *not* reject the H_0

Two-sample Wilcoxon signed rank test: Application

Draw conclusions

Using R we obtain the p-value from the exact distribution:

p - value = 2 * Pr(W <= 0):

2 * psignrank(q = 0, n = 3)

[1] 0.25

or

$$p - value = 2 * Pr(W \ge 6) = 2 * (1 - Pr(W < 6))$$
:

2 * (1 - psignrank(q = 6 - 1, n = 3, lower.tail = TRUE))

[1] 0.25

2 * psignrank(q = 6 - 1, n = 3, lower.tail = FALSE)

[1] 0.25